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Abstract

Local CPS conversion is a compiler transformation for improv-
ing the code generated for nested loops by a direct-style compiler.
The transformation consists of a combination of CPS conversion
and light-weight closure conversion, which allows the compiler to
merge the environments of nested recursive functions. This merg-
ing, in turn, allows the backend to use a single machine-level proce-
dure to implement the nested loops. Preliminary experiments with
the Moby compiler show the potential for significant reductions in
loop overhead as a result of Local CPS conversion.

1 Introduction

Most compilers for functional languages use a A-calculus based in-
termediate representation (IR) for their optimization phases. The \-
calculus is a good match for this purpose because, on the one hand,
it models surface-language features like higher-order functions and
lexical scoping, while, on the other hand, it can be transformed into
a form that is quite close to the machine model.

To make analysis and optimization more tractable, compilers
typically restrict the IR to a subset of the A-calculus. One such
subset is the so-called direct style (DS) representation, where terms
are normalized so that function arguments are always atomic (i.e.,
variables and constants) and intermediate results are bound to vari-
ables.! The DS representation makes the data-flow of the program
explicit by binding all intermediate values to variables. Another
common representation is continuation-passing style (CPS), where
function applications are further restricted to occur only in tail po-
sitions and function returns are represented explicitly as the tail-
application of continuation functions [Ste78, KKR*86, App92]. In
CPS, both the data-flow and control-flow of the program is made
explicit, which makes it well suited to optimizing the program’s
control structures.

While there has been some debate over the relative merits of
these two approaches [FSDF93, DDO00], it is fair to say that both
have their advantages and we do not discuss their relative merits.
In the end, the choice of IR is an engineering decision that must
be made for each compiler. A discussion of this choice is beyond

1There are a number of different direct-style representations: e.g., Flanagan et al's
A-form [FSDF93], the TIL compiler’s B-form [TMC96], and the RML compiler’s
gL [OT98].

the scope of this paper; instead, we focus on the idea of exploiting
CPS representation in a DS-based optimizer. This exploitation is
possible because the CPS terms are a subset of the DS terms (i.e.,
CPS C DS C A-calculus).

This paper describes a transformation and supporting analysis
that exemplifies the idea of exploiting CPS representation in a DS-
based optimizer. In the next section, we describe a motivating ex-
ample. We then describe our transformation and an analysis for
detecting when it is applicable in Section 3. This transformation
should be useful for any DS-based optimizer. We are implement-
ing this transformation in our compiler for the MoBY programming
language [FR99] and we present a preliminary indication of its use-
fulness in Section 4.2 We discuss related work in Section 5 and then
conclude.

2 Theproblem

It is well known that loops can be represented as tail-recursive func-
tions and many compilers for functional languages use tail recur-
sion to represent loops in their IR. By treating tail-recursive func-
tion calls as “gotos with arguments,” a compiler can generate code
for a loop that is comparable to that generated by a compiler for
an imperative language. But when loops are nested, generating
efficient code becomes more difficult. For example, consider the
following C-code:
for (i =0; i <n; i+4)
for (j =07 ] <n; j++)
£, )

This kind of nested loop structure is found in many algorithms (e.g.,
matrix multiplication). Translating this code to a sugared DS rep-
resentation, with the f or -loops replaced by recursion, results in
the code given in Figure 1.5 While the two loop functions, | p_i
and | p_j, are tail-recursive, the call “I p_j 0” from the outer
loop (I p_i ) to the inner loop is not tail recursive. If the compiler
directly translates the DS representation to machine code, the two
loops will occupy separate procedures with separate stack frames.
This structure inhibits loop optimizations, register allocation, and
scheduling, as well as adding call/return overhead to the outer loop.
On the other hand, the CPS representation of this example, given
in Figure 2, makes explicit the connection between the return from
| p_j and the next iteration of | p_i . A simple control-flow anal-
ysis will show that the return continuation of | p_j is always the
known function k5, which enables compiling the nested loops into
a single machine procedure.

2MoBy is a higher-order typed language that combines support
for functional, object-oriented, and concurrent programming. See
www . cs . bel l-labs.com/~jhr/moby for more information.

31n this paper we use SML-like syntax as a sugared form of DS representation.



fun applyf (f, n) =let
fun lp_i i =if (i <n)
then | et
funlp_j j =if (j <n)
then (f(i, j); Ip_j(j+1))

el se ()
in
Ipj O; Ip_i(i+1)
end
el se ()
in
Ip_i O

end

Figure 1: A nested loop using tail-recursion

fun applyf (f, n, k1) = let
fun Ip_i (i, k2) =if (i <n)

then let
fun lp_j (j, k3) =if (j <n)
then |et
fun k4 () = Ip_j(i+1, k3)
in
f(i, j, k4)
end
el se k3()
fun k5 () = lp_i(i+1, k2)
in
I'p_j (0, k5)
end
el se k2()
in
Ip_i (0, k1)
end

Figure 2: The CPS converted appl yF example

This example suggests that by making the return continuation
of | p_j explicit, we can replace the call/return of | p_j with direct
jumps.

3 Thesolution

The MoBY compiler performs standard optimizations (e.g., con-
traction, useless-variable elimination, and CSE) using a DS rep-
resentation we call BOL. Loops are represented using tail recur-
sion in BOL. After optimization, the compiler performs the closure
phase, which is responsible for converting the nested functions into
a collection of top-level functions with no free variables. Follow-
ing the closure phase is the frame phase, which determines which
functions can share the same stack frame; a group of functions that
share the same frame is called a cluster. Our goal is to have nested
loops, like the one in Figure 1, translate into a single cluster (as
they would in an imperative language like C). Doing so has many
performance advantages. It enables better loop optimizations, reg-
ister allocation, and scheduling. It also eliminates the overhead of
creating a closure for the inner loop, the call to the inner loop, and
the heap-limit check on return from the inner loop.

The technique we use to achieve this goal is us a local CPS
(LCPS) conversion to convert the non-tail calls to the inner loop
into tail calls. Once the LCPS transformation has been applied, the
frame phase is able to group the functions that comprise the nested

e u= I:t labeled term
t = =z variable
| fun f(Z)=eiiney function binding
| letz=erines let binding
| ifaxthene;elsees conditional
|  F(@) application

Figure 3: A simple direct-style IR

loop into the same cluster.

To determine where it is useful to apply the transformation, we
need some form of control-flow analysis. The property that we are
interested in is when a known function has the same return contin-
uation at all of its call-sites. The MoBY compiler uses a simple
syntactic analysis to determine this property. For each function de-
fined in the module being compiled, we conservatively estimate the
set of return continuations for the function. If the estimated set is a
singleton set, then we apply the transformation.

3.1 Analyss

The analysis computes an approximation of return continuations of
each known function, so a standard control-flow analysis is applica-
ble [NNH99]. In this section, we describe a very simple linear-time
analysis. This analysis uses a simple notion of escaping function
— if a function name is mentioned in a non-application rdle, it is
regarded as escaping and we define its return continuation to be T.#

To describe the analysis, we use the simple DS IR given in Fig-
ure 3. As usual, we assume bound variables are unique so we do
not have to worry about unintended name capture when transform-
ing code. In this IR, expressions are uniquely labeled terms. We
use the labels to represent abstract continuations in the analysis.

Let LABEL be the set of term labels. Then we define an abstract
domain RCONT = LABELU {L, T}. We use p to denote elements
of RCONT. Intuitively, one can think of RCONT as a squashed
powerset domain, with _L for the empty set, I for the singleton set
{1}, and T for everything else. We define the partial order C on
RCONT, with L. £ [ C T forany I € LABEL, and we define
p1 U po to be the least upper bound of p; and p» under C.

Given an expression and its abstract continuation, the analysis
computes a map I from variables (i.e., function names) to abstract
continuations.

T € RENV = VAR 3 RCONT
We extend T to a total function when applying it to a variable by
defining I'(z) = L for z ¢ dom(T"). We define the join of I'; and
PQ by

Fl [©] F2 = {x = Fl(x) LI FQ(.’E) | T € dom(I‘l) U dOm(Fz)}
The analysis itself has the following type:
R : EXP — RCONT — RENV

With these definitions, we can describe the analysis, which is pre-
sented in Figure 4. We map unknown and escaping functions to
T, as can be seen in Rules 1, 2, and 5. Rule 2 shows how we
analyse function definitions — first we analyse the uses of f in
its scope and then we use the result of that analysis as the return

“This definition is the one used by Appel [App92] in his CPS-based framework.



R[l:z]p =
Rll:fun f(Z)=e1ine]p =

Rli:letz=e1inl :t2]p =
R[l:if ztheney el seea]p
RL: f@p =

Figure 4

{z =T} @
Rlei]p ¥ T W{E— T} 2
whereI" = R[ea]pand p' = T'(f).
Rlea]l WR[' : t2]pw {z — T} 3
Rlexlp & Rlealp @
{f o pyo iz T} ©®

: The analysis

continuation for the body of f. For | et bindings, the body of the
| et is the continuation of the binding. The result of the analysis
is the join of the sub-analyses. When analysing a function appli-
cation (Rule 5), we map the applied function to the application’s
abstract continuation and treat the arguments as escaping. To anal-
yse a complete program, we use T as the return continuation and
define ANAL(e) = R[e]T.

This analysis can be extended to handle mutually recursive
functions by computing a fixed-point at function bindings. Since
such a brute-force approach may prove expensive in practice, a bet-
ter solution may be to first compute the approximate call-graph and
then use the call-graph to guide the analysis.

3.2 TheLCPStransformation

If the analysis has determined that all call sites of a function f have
the same return continuation (i.e., RENV(f ) = 1), then we apply
the LCPS transformation to f. Transforming f has two parts: we
must reify the continuation of f, creating an explicit continuation
function k¢, and we must introduce calls to & at the return sites of
f . For example, consider the following code fragment:

fun f () = ... in ...
fung () =... lety =1f() ine
Assuming that f is eligible for the LCPS transformation, this frag-
ment is converted to

funf (k) = (... k()) in ...
fun g () = ... fun k (y) = e in (k)

Here we have made the return continuation of f explicit by modify-
ing f to take its continuation as an argument (k), which it calls at its
return sites. We have also split the body of g to create the explicit
representation of f ’s return continuation (k:) and have modified
the non-tail call site of f to pass kr to f .

To understand how the LCPS transformation works, it is in-
structive to examine the global CPS conversion. Figure 5 gives the
transformation for the simple direct-style IR of Figure 3 (ignoring
the labels). For the LCPS transformation, we only want to apply
the CPS conversion under certain conditions. Assuming that T" is
the result of analysing the program, let the set of eligible function
be defined as € = {f | I'(f) € LABEL}. We then specialize the
rules of Figure 5 as follows:

Rule6: When the expression z is in the tail position of a function
f € &, then we apply the CPS conversion (i.e., we transform
the implicit return into an explicit application of the tail con-
tinuation k).

Rule7: When f € £ we apply the CPS conversion.

Rule8: When the expression e; contains an application of a func-
tion f € £, we apply the CPS transformation.

Rule9: Since this rule does not transform the expression, there is
no modification. Note that we do not have to worry about
code duplication, since & is a variable and not a A-term.

Rule 10: If the function f € £, then we apply the CPS conversion.
In this situation, & will either be an explicit return continua-
tion (introduced by Rule 8) or a return continuation parameter
(introduced by Rule 7).

It is interesting to examine what happens when the call-site of
f is buried in the branch of a conditional. For example, consider
the following fragment:

let x = if y then (let w=f()

ineg

in ey) else e

Applying LCPS to f results in the following code:

fun kit (X) = ez in
ify
then fun k (W) = Clei]kit in f(ks)
el se Clex2]kit

Here we have introduced two continuation functions: ki for the
join-point following the i f and k¢ for the return continuation of f .

Up to now, we have been passing the return continuation k¢ to
f as an additional argument (as is standard in CPS conversion), but
since our analysis has already told us that f has exactly one return
continuation, we should specialize the return sites of f to call k¢ di-
rectly. To do so requires lifting the definition of &; up to the binding
site of .5 The difficulty with this lifting is that the return contin-
uation and its functions have different free variables, so we need
to close the function over those variables that will be out of scope
at the destination of the function. While a closure object would
be sufficient for this purpose, we chose to augment our transforma-
tion with a simple form of light-weight closure conversion [SW97],
which turns the free variables into function parameters. Having
these variables as parameters in the final DS representation means
that they will get mapped to machine registers. To illustrate closure
conversion, consider the following fragment:

funf () =... zin
..I.et y =...1in
et x = f() in
let w=x +vyin
w

In this code, the return continuation of the call to f hasy as a free
variable, so we add y to the parameters of f and the transformed f
passes y to its return continuation. The result of the transformation
is:

5We also need to extend the IR to support mutually recursive bindings.



Clz]lk = k(z) (6)

Clfun f(£) =e1ine]k = funf(k',Z)=Clei]k’ i nCle2x]k wherek’ isfresh (7)
Cllet z=e1ine]k = funk'(z)=Clez]kinC[ei]k’ wherek’isfresh (8)
C[if zthenejelsees]k = if zthenClei]k el seCle2]k ©)
Clr@k = [k 2) (10

Figure 5: A global CPS conversion

fun applyf (f, n) = let
fun lp_i (i, f, n) =if (i <n)
then Ip_j (0, i, f, n)
el se ()
and Ip_j (j, i, f, n) =
if (j <n
then (
(i, j);
lp_j(ji+1, i, f, n))
else k (i, f, n)
and k (i, f, n) =
lp_i(i+1, f, n)
in
lp_i (0, f, n)
end

Figure 6: The appl yF function after the LCPS transformation

fun f (y) = ... k(z, y)
and kt (X, y) =let w=x +yinw
”I.et y =...1n

f(y)

We define f and k¢ in the same binding because, in general, they
may be mutually recursive. In general, the LCPS transformation
migrates the converted function f and its explicit continuation to
the binding site of f’s non-tail caller. By doing so, we guaran-
tee that all these functions will be compiled into a single machine
procedure.

Revisiting our original motivating example from Figure 1, the
result of the analysis will identify | p_j as a candidate for the
LCPS transformation (i.e., all of its call sites have the same return
continuation). The code resulting from applying the transforma-
tionto| p_j isgiven in Figure 6. Notice that light-weight closure
conversion has been applied to all of the functions in the body of
appl yF. When translated to the target machine code, the functions
appl yF, I p_i, | p_j, and k will all be in the same cluster and
share the same stack frame.

4 Experience

We have written a prototype implementation of the analysis and
LCPS transformation for the language of Figure 3. Our implemen-
tation is currently organized into the analysis plus four transforma-
tion passes. The first pass marks those | et bindings for which
Rule 8 applies and the second pass performs the actual CPS trans-

formation guided by the marks.® The second pass also determines
which functions should share the same binding site. The third pass
then computes the free variables of these functions and the fourth
pass migrates the function definitions and performs the light-weight
closure conversion.

We are in the process of implementing the LCPS transformation
in the MoBY compiler. For the most part, this is straightforward
adaptation of our prototype, although we need a more sophisticated
analysis to handle mutually recursive functions. We are also inte-
grating the third and fourth passes of the transformation with the
existing closure phase. This integration has the added benefit that
we can use light-weight closure conversion for functions that rep-
resent local control-flow (e.g., loops). By moving variables from
closures into parameters, we expose them to the register allocator
and reduce heap allocation,

To judge the effectiveness of the transformation, we applied
it as a source-language transformation to the MoBY version of
the appl yF function (essentially, we compared the MoBY ver-
sions of Figure 1 and Figure 6). Running the appl yF program
on the null function with n set to 10000, the LCPS transforma-
tion results in a 25% reduction in execution time (2.34s vs. 3.11s
on a 733MHz PIII). While the performance improvements on real
workloads is yet to be determined, these preliminary measurements
strongly suggest that the LCPS transformation is a useful tool in a
DS optimizer.

5 Reated work

Most of the literature about compiler optimizations for strict func-
tional languages uses CPS as a representation. Tarditi’s the-
sis [Tar96] is probably the most detailed description of a DS-
based optimizer for strict functional languages, but he does not col-
lapse nested loops. We are not aware of any direct-style compiler
that implements the LCPS transformation (the OCAML [Ler00],
TIL [TMC™96, Tar96], and RML [OT98] compilers do not). The
OCAML system provides f or -loops over integer intervals as a lan-
guage feature. These loops are preserved in the IR and result in
code that is similar to that produced by a C compiler [Ler97], but
the OCAML compiler (Version 3.00) does not flatten nested loops
when they are expressed using recursion.

Kelsey describes a technique for combining functions in a CPS-
based framework [Kel95]. In his framework, he annotates X ab-
stractions with either proc, cont, or jump, where jump is used to
mark control transfers that occur within the same machine proce-
dure. He describes an analysis and transformation for converting a
Aproc INtO @ Ajump. The MoBY compiler’s frame phase (mentioned
in Section 3) performs a similar analysis and transformation when
grouping functions into clusters. Since the BOL IR is direct-style,

S\We use two passes for this part of the transformation because it greatly simplifies
the bookkeeping.



we rely on the LCPS transformation to enable the clustering of
nested loops in the frame phase.

The MLton compiler is a CPS-based compiler for Standard ML,
which uses a transformation called contification to group functions
into the same machine procedure. This transformation very similar
to Kelsey’s approach, but it has not been described in the literature.

Kim, Yi, and Danvy have used selective CPS transformation
as a technique for replacing SML’s exception raising and han-
dling mechanisms with continuation operations [KYD98]. Unlike
LCPS, their transformation does not move code or do closure con-
version. Selective CPS transformation is another example of using
the CPS representation in a direct-style compiler (although their
experiments were done using SML/NJ for their backend, which is
a CPS-based compiler).

6 Conclusion

We have presented a local CPS transformation that can be used
in a direct-style compiler to improve the performance of nested
loops. Preliminary measurements show a 25% reduction in loop
overhead for a simple nested loop. While we have only presented
fairly simple examples, the LCPS transformation can handle com-
plicated looping structures, such as multiple inner loops and loops
expressed as mutually recursive functions (e.g., as you would get
when encoding state machines). The LCPS transformation is one
example of exploiting the advantages of CPS in a direct-style com-
piler; we plan to explore other opportunities for exploiting CPS in
our compiler.
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