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Abstract

Practical implementations of high-level languages must provide access to libraries
and system services that have APIs specified in a low-level language (usually C).
An important characteristic of such mechanisms is the foreign-interface policy that
defines how to bridge the semantic gap between the high-level language and C. For
example, IDL-based tools generate code to marshal data into and out of the high-
level representation according to user annotations. The design space of foreign-
interface policies is large and there are pros and cons to each approach. Rather
than commit to a particular policy, we choose to focus on the problem of support-
ing a gamut of interoperability policies. In this paper, we describe a framework for
language interoperability that is expressive enough to support very efficient imple-
mentations of a wide range of different foreign-interface policies. We describe two
tools that implement substantially different policies on top of our framework and
present benchmarks that demonstrate their efficiency.
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1 Introduction

High-level languages, such as most functional and object-oriented languages,
present the programmer with an abstract model of data representations. While
such an abstraction hides the details of the special run-time representations
needed to support high-level features, it comes at the cost of making interoper-
ability with low-level languages like C non-trivial. This incompatibility poses
serious challenges for both implementors and users of high-level languages,
since there are numerous important libraries that have C APIs (application
program interfaces). For the purposes of this paper, we view C as the proto-
typical low-level language. 4

All widely used high-level language implementations provide some means
for calling foreign functions written in C. Such a mechanism is called a foreign-
function interface (FFI). The requirements of an FFI mechanism are to convert
the arguments of a call from their high-level to their low-level representations
(called marshaling), to handle the transfer of control from the high-level lan-
guage to C and back, and then to convert the low-level representation of the
results into their corresponding high-level representation (called unmarshal-
ing). In addition, the FFI mechanism may map errors to high-level exceptions.
The details of how data marshaling and unmarshaling are performed define a
policy that determines how high-level code can interact with foreign functions.

One important policy question is how to treat complicated foreign data
structures, such as C structs, arrays, and pointer data structures. While
most existing FFI mechanisms handle C scalars well, they usually treat large
C data structures as abstract values in the high-level language. Although
this approach is often sufficient, there are situations in which the high-level
language needs to have direct access to large C data structures and marshal-
ing is infeasible. Examples include situations in which an outside authority
predetermines a data format not expressible in the high-level language, such
as network packet headers and RPC stub generation, or where the volume of
data makes data marshaling prohibitively expensive, such as real-time graph-
ics applications that must pass large amounts of vertex and texture data to the
rendering engine. For these situations, we need a foreign-data interface (FDI),
which is a mechanism for allowing the high-level language to manipulate C
representations directly. The combination of an FFI and an FDI provides a
complete solution to the interoperability problem.

This paper describes the architecture of the Moby compiler and how that
architecture efficiently supports a wide range of interoperability policies, in-
cluding both FFIs and FDIs. Moby is a high-level, statically-typed program-
ming language with an ML-like module system [FR99]. Moby’s support for
interoperability is based on two features of its compiler. First, the compiler’s
intermediate representation, called BOL, is expressive enough to implement

4 We do not consider the problems associated with interoperability between different high-
level languages in this paper.
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C. Hence, it is easy for interoperability tools to generate BOL code to ma-
nipulate C data structures, access C global variables, and invoke C functions.
Second, the compiler can import BOL code into its compilation environment;
including BOL code produced by interoperability tools.

This framework produces very efficient foreign interfaces because the com-
piler infrastructure supports cross-module inlining of BOL code, allowing it
to tightly integrate BOL code for manipulating C structures with high-level
client code. Because of inlining, the assembly code sequences generated by
the Moby compiler for accessing C data structures have very little overhead;
indeed, the instruction sequences mimic those produced by a C compiler. We
use the same mechanism to define Moby’s primitive types, such as integers,
and the associated operations, such as addition. Hence the efficiency of this
mechanism is crucial to the performance of the Moby compiler.

Our architecture serves as the basis for implementing a number of different
foreign interface policies. Each such policy must determine how C types should
be packaged in Moby. We have built tools that implement two different
policies: one that marshals data to cross the boundary between C and Moby
and one that simply embeds C into Moby. The first of these belongs to the
family of interoperability tools based on an interface description language or
IDL [FLMP98,Ler99,PR00]. An IDL provides annotations to specify function
argument and result-passing conventions, as well as the semantics of C types
(e.g., marking a “char *” value as a string). The moby-idl tool generates a
Moby interface to C functions from an IDL specification. The second tool,
called Charon, implements the minimal (or identity) policy. By embedding C
directly into Moby, this tool provides both a foreign function interface and a
foreign data interface, in that it allows high-level code to manipulate low-level
data structures in-place. It is worth noting that in our framework, a given
Moby program may use foreign APIs from both of these sources, or others
like them, concomitantly.

The paper is organized as follows. In Section 2, we describe the architecture
of the Moby compiler and explain how this architecture supports data-level
interoperability. We describe moby-idl and Charon in Section 3 as examples
of interoperability tools built using our framework. In Section 4, we give
experimental evidence showing that these tools yield very efficient foreign
interfaces between C and Moby. We discuss related work in Section 5 and
conclude in Section 6.

2 The Moby compiler infrastructure

Our framework for interoperability is based on our existing compiler infrastruc-
ture. There are several aspects of this infrastructure that are key to supporting
interoperability:

• The compiler’s intermediate representation, called BOL, is expressive enough
to describe low-level data representations and manipulations that are not
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Fig. 1. The Moby compiler infrastructure

expressible in Moby itself.

• Primitive Moby types and operations are defined in terms of BOL types
and functions. These definitions are given in external Moby interface
files, called MBI files, and play a rôle similar to that of native methods
in Java [Lia99] in that they allow Moby interfaces to be implemented by
low-level code that cannot be written in Moby.

• The compiler can import and inline code from MBI files.

• There is a tool for generating MBI files from textual descriptions, called
MBX files.

Figure 1 illustrates our compiler infrastructure when compiling a Moby source
file (x.mby) that imports interfaces from both an IDL file (y.idl) and a C
header file (z.h). We use moby-idl to generate y.mbi from the IDL file and
Charon to generate z.mbi from the C header file. In this section, we discuss
this infrastructure and the small number of additional features we added to
support interoperability.

2.1 MBI files

In addition to an object file, the Moby compiler (mobyc) generates an MBI
file when compiling a source file. Such a file contains information to support
cross-module typechecking, analysis, and inlining. Collectively, the MBI files
of an application are called its compilation environment. An MBI file contains
the information found in a Moby signature, but it also can contain informa-
tion about the implementation that is not visible in the signature, such as the
representation of abstract types (as BOL types) and the implementation of
functions (as BOL terms).

While most MBI files are generated by the compiler from Moby source
files, the compiler can use MBI files from other sources. For example, the
primitive types and operations (e.g., Int and +) are specified in hand-written
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MBI files, 5 which the compiler imports. We use the same mechanism to
import information about foreign functions and data representations into the
compiler.

2.2 BOL

The Moby compiler uses an extended λ-calculus, called BOL, as its intermedi-
ate representation for optimization. We first describe BOL’s type system and
how to connect Moby types to their underlying BOL representation. We then
give an overview of BOL terms and how they support efficient interoperability.

BOL has a weak type system that does not guarantee type safety (one can
think of BOL’s type system as roughly equivalent to C’s without the recur-
sive types). The Moby compiler uses BOL types to guide the mapping of
BOL variables to machine registers, to provide representation information for
the garbage collector (we are using the Smith-Morrisett mostly-copying collec-
tor [SM97]), and to provide some sanity checking for the optimizer’s transfor-
mations. For example, using BOL type constructors enum, ptr, vector, and
struct, we can define names for BOL types:

typedef char = enum(0,255)
typedef string_data = ptr(vector(1, char))
typedef string = ptr(struct 8:4 (0: int, 4: string_data))

A char is a value between 0 and 255, a string_data is a pointer to a vector
of unknown length storing chars (each of which has a size of one byte), and
a string is a pointer to a heap object consisting of an integer (the length)
and a string_data pointer. To promote interoperability with C, the runtime
representation of string data is null-terminated. We use BOL struct types
to describe heap objects. In the example, the “8:4” notation on the BOL
struct type gives its size and alignment, respectively; the “0:” and “4:” are
the offsets of its fields. These definitions assume a 32-bit architecture.

The MBI file format allows an abstract Moby type to be defined in terms
of a BOL type definition. For example, the MBI file that implements the
primitive Moby types defines the Moby String type in terms of the primitive
BOL type string given above.

type String = prim string

BOL types are stratified into three levels (or kinds): types with kind word
describe those values that can be represented by a general-purpose register on
the target machine (e.g., scalars and pointers); types with kind var describe
those values that can be bound to a BOL variable, which includes the word
types; and types with kind memory describe values that can be held in
memory, which includes the word and var types. Target-specific aspects of
the type system are captured by the kinding judgements. For example, on a
32-bit architecture the 64-bit integer type has var kind, whereas on a 64-bit

5 Strictly speaking, we write an MBX file that is translated into a binary MBI file.
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architecture, the 64-bit integer type has word kind.

Syntactically, BOL is a direct-sytle extended λ calculus. 6 It includes a
primitive notion of heap object and primitive operations for manipulating raw
machine data types such as addresses and 32-bit integers. The binding form

let obj : ty = alloc (x1, ..., xn)
...

allocates a heap object of n fields and binds obj to it. The memory layout of
obj is inferred from the types of the xi. We use the notation #i to select the
ith field of such objects (zero-based indexing). BOL primitive operations in-
clude I32Add for adding 32-bit integers, AdrAdd for pointer arithmetic, AdrEq
for comparing addresses, and AdrLoadI32 for fetching 32-bit integers from
memory.

MBI files can include definitions of Moby functions in terms of BOL
terms; these definitions are used to support cross-module inlining and inlining
of primitive operations. For example, the length function on strings is defined
as follows:

val length : String -> Int =
fun len (s : string, _ : exn_handler) {
let n : int = s#0
return n

}

The first line gives the Moby name and type of the function; the remaining
code is its BOL definition. The BOL function len (the name is to allow
recursion) has two parameters. The first parameter (s) has BOL string

type (which is the representation of the Moby String type); the second is
the implicit exception-handler continuation parameter required by the Moby
calling convention. Since the implementation of the length function does not
use this parameter, we use a wildcard for it. The body of the function is
trivial: we select the first component of s (recall that the BOL type string is
a pointer to a heap object), bind it to n, and then return n.

The Moby compiler inlines such BOL implementations to reduce the over-
head of calling the associated Moby functions and to enable other optimiza-
tions. For example, when compiling the Moby expression length s + 1, the
definition of length will be inlined, resulting in the following intermediate
BOL term:

let n = s#0
let t = I32Add(n, 1)
return t

In the case that s is bound to a known literal, this expression can be further
reduced to a constant.

6 Strictly speaking, BOL is a normalized representation that requires all intermediate re-
sults (including literals) to be bound to fresh variables, but our tools for compiling MBI
files from their textual description accepts more complicated subexpressions and performs
the normalization by introducing new temporary variables. In this paper, we use the un-
normalized representation, since it is easier to read.
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2.3 Interoperability extensions

To support interoperability, we have added C calls, function types, and decla-
rations to BOL. To improve the efficiency of foreign function calls, we added
a mechanism to stack allocate temporary storage. We describe these pieces in
turn.

BOL has a binding form for calling C functions:

let result = ccall id (arg1, ..., argn)
...

The identifier id is a BOL variable that may be bound to a known C function
(or to a function pointer). The type of id controls the calling convention for
the C call; we added a C-function type constructor to the BOL type system for
this purpose. The types of C function parameters are mapped to BOL types in
a way that preserves the specified calling convention (e.g., small integer types
are promoted to the BOL equivalent of int). The one technical complication
arises from struct parameters. BOL’s kinding system does not allow BOL
variables to be bound to values whose type has memory kind, so we have
to represent C struct values by their addresses. The problem then is how
to distinguish between a pointer to a struct and a struct parameter? We
added an additional type constructor for the latter case to solve this problem.
We also added a void type to represent void return types from C functions.
Our mechanism does not support varargs yet, but it should be possible to do
so once the underlying code generator has such support. 7

If an MBI file has a reference to a C function, it must contain an external
declaration, which has the following form in the textual (MBX) representation:

external result-ty C-ident (param-ty1, ..., param-tyn)

where result-ty, param-ty1, ..., param-tyn are BOL types of var kind.

Connecting a high-level language and C often requires temporary space for
marshaling struct arguments and results. Efficiency considerations require
a lightweight mechanism for allocating this space. Since the lifetime of such
storage is the call to the C function, the most efficient place for such storage
is in the stack frame of the wrapper function. To support such allocation, we
added a binding form to BOL for allocating stack space. The binding form

stackalloc x [sz, align]
...

binds x to sz bytes of stack storage aligned on an align-byte boundary (sz
and align are both integer constants). The lifetime of the storage is the scope
of the binding (i.e., the “...”), so BOL code that uses stackalloc must
not allow references to the storage to escape. In practice, this restriction has
not been a problem; furthermore, the Moby optimizer does not perform any
transformations that would expand the extent of a variable beyond its scope.

7 Our code generator is based on the MLRisc framework [GGR94].

7



3 Applications

Our framework is designed to support a wide range of interoperability policies.
In this section, we describe two foreign-interface generator tools for Moby that
implement significantly different policies on top of our framework. We also
describe some other potential uses of our framework.

3.1 Moby IDL

One of the most popular ways of automating the connection between high-
level languages and C is to use an interface description language (IDL) to
specify the foreign interface [FLMP98,Ler99,PR00]. An IDL specification is
essentially a C header file with annotations. The annotations are used to
specify the direction of parameters and the interpretation of pointer types.
IDL-based generators compile these specifications into high-level interfaces
and glue code. We have retargeted the SML/NJ IDL-based foreign-interface
generator [PR00] to produce MBI files from an IDL specification. 8

The moby-idl tool generates an MBI file that defines a Moby type for
each non-trivial type in the IDL specification and a stub function for each
function prototype. The stub function embodies a copy-in/copy-out policy
for calling C functions: every input parameter is translated from its Moby
representation to C and then passed to the C function, and the result and
every output parameter is translated from C to its Moby representation. The
stub functions have Moby types, but are implemented using BOL.

To make this discussion concrete, we give two examples, each highlighting
different aspects of the moby-idl tool. The first example is the getenv function
from the C library. This function takes a string argument that names an
environment variable and returns the value of the variable as a string. If the
named variable has no value, NULL is returned. We use the following IDL
specification to capture this behavior:

typedef [unique,string] char *StringOpt;

StringOpt getenv ([in,string] char *name);

The StringOpt type is annotated as being unique, which means that it can
be NULL, and it is annotated as being a string. The name parameter to the
getenv function is marked as being an input parameter and also as a string.
The moby-idl tool is guided by these annotations to produce the following
Moby specification:

val getenv : String -> Option(String)

In the MBI file, this stub function has the following definition:

8 There are a number of IDL variants; the SML/NJ tool (and moby-idl) accepts an
extension of the OSF DCE dialect, which is essentially the version that Microsoft uses for
COM [Gud01].
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val getenv : String -> Option(String) =
fun getenv (str : string, _ : exn_handler) {
let c_str = str#1
let c_res = ccall getenv (c_str)
if AdrEq (c_res, nil) then return 0
else {
let res_str = ccall MOBY_AllocCString(c_res)
let res = alloc (res_str)
return (res)

}
}

This BOL code converts the input parameter str to a C string by selecting
the second component of the heap object (recall that Moby strings are rep-
resented as a pair of a length and data-pointer) and passing it to the getenv

function. If the result (c_res) is NULL, then 0 is returned, which is the repre-
sentation of the Moby constant None. If the result is not NULL, then a Moby
string is allocated and initialized from c_res by calling the Moby runtime
system function MOBY_AllocCString. The Moby string is then wrapped in
a one-word heap object (the representation of the Some data constructor) and
returned.

A slightly more involved example is the following IDL specification of the
interface to the Unix gettimeofday system call:

typedef struct {
long tv_sec;
long tv_usec;

} timeval;

typedef struct {
int tz_minuteswest;
int tz_dsttime;

} timezone;

int gettimeofday (
[ref, out] timeval *t,
[ref, out] timezone *tz);

This specification includes out annotations on the two parameters of gettimeofday.
These out annotations identify the parameters as pointers to storage for re-
turning the results of the function call. The moby-idl tool produces the fol-
lowing Moby interface from this specification:

datatype Timeval { TIMEVAL of (Int, Int) }
datatype Timezone { TIMEZONE of (Int, Int) }
val gettimeofday : () -> (Int, Timeval, Timezone)

The tool has translated the C struct types to Moby singleton datatypes. 9

The tool has mapped the out parameters to results in generating the Moby
type for the function gettimeofday. Again, we implement the stub code that
connects C and Moby using BOL code in the generated MBI file. This code

9 A labeled record type would be preferable, but Moby does not have records yet.
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has the following form:

val gettimeofday : () -> (Int, Timeval, Timezone) =
fun gettimeofday (_ : exn_handler) {
stackalloc tm[8:4], tz[8:4]
let res = ccall gettimeofday (tm, tz)
let tm2 = alloc(AdrLoadI32(tm), AdrLoadI32(AdrAdd(tm, 4)))
let tz2 = alloc(AdrLoadI32(tz), AdrLoadI32(AdrAdd(tz, 4)))
return (res, tm2, tz2)

}

The code uses the BOL stackalloc construct to allocate temporary storage
for the results in the stack. The variables tm and tz are each bound to the
address of 8 bytes of stack storage (with 4-byte alignment). The extent of
this storage is the scope of the variables (the rest of the function in this case).
After calling the C gettimeofday function, the code extracts the contents of
the results from the temporary storage and allocates a pair of heap objects
for the results.

In our framework, uses of the getenv or gettimeofday functions can be
inlined at the call site, which avoids the extra level of function call found
in most IDL-based FFI mechanisms and also provides further opportunities
for optimization such as avoiding unnecessary marshaling. Section 4 provides
experimental results that demonstrate the efficiency of this approach.

3.2 Charon

Using the Moby compiler infrastructure, we have built a second interoperabil-
ity tool, called Charon. This tool implements the minimal interoperability
policy, in that it simply embeds C into Moby. It maps C types into abstract
Moby types and provides Moby functions, implemented in BOL, for manip-
ulating C values. It provides Moby functions, again implemented in BOL,
for calling C functions.

Charon takes as input a C header file and produces two output files. The
first file contains a Moby signature describing the types and operations de-
fined by the header file. The second file is an MBI file containing BOL code
that implements the signature in the first file. Note that the signature can-
not be implemented in Moby directly because unlike BOL, Moby does not
include the low-level operations necessary to manipulate C data structures.
The Moby compiler converts MBI files into assembly code that can be linked
with the compiled C code that implements the header file.

Charon factors its embedding into two parts: one generic to C and one
specific to the input header file. The generic part is the C-interface library,
which is implemented by a hand-written MBI file. The C-interface library
provides several type constructors for encoding C types:

type LValue(t)
type CPtr(t)
type SizeOf(t)

LValue(ty) is the type of an assignable C value of type ty. The underlying

10



representation of LValue(ty) is an address of a memory-location containing
a value of type ty (e.g., the address of a C global variable or a C heap
location). CPtr(ty) is the type of a pointer to a value (or array of values)
of type ty. SizeOf(ty) is used to type an abstract representation of the size
of ty; we explain further below. We define a collection of phantom types 10

corresponding to the primitive C types (e.g., SChar for signed characters and
SInt for signed integers). These phantom types are used to constrain the
types of generic operations on C values. For example, the C-interface library
defines the following operations on C pointers:

val isNull : [t] CPtr(t) -> Bool
val deref : [t] CPtr(t) -> LValue(t)
val getPtr : [t] LValue(CPtr(t)) -> CPtr(t)
val setPtr : [t] (LValue(CPtr(t)), CPtr(t)) -> ()
val malloc : [t] SizeOf(t) -> CPtr(t)

(the notation “[t]” is the binding of a type variable t). The C-interface
library also defines specific operations for the primitive C types, such as the
following operations for signed integers:

val getSInt : LValue(SInt) -> Int
val setSInt : (LValue(SInt), Int) -> ()
val sizeOfSInt : () -> SizeOf(SInt)

In addition to the generic support provided by the C-interface library,
Charon generates an MBI file that contains types and functions specific to
the input header file. For example, consider the following C declarations that
describe a binary tree type and a function for creating such trees:

typedef struct tree {
int label;
tree_ptr left;
tree_ptr right;

} tree_node, *tree_ptr;
extern tree_ptr MakeTree (int depth);

From these declarations, Charon generates an MBI file that implements the
following Moby interface:

type Struct_tree
type Def_tree_node = Struct_tree
type Def_tree_ptr = CPtr(Struct_tree)

module Stree {
val label : LValue(Struct_tree) -> LValue(SInt)
val left : LValue(Struct_tree) -> LValue(Def_tree_ptr)
val right : LValue(Struct_tree) -> LValue(Def_tree_ptr)
val sizeOf : () -> SizeOf(Struct_tree)

}

val makeTree : Int -> LValue(Def_tree_ptr)

10 Phantom types are types whose only purpose is to serve as arguments to type con-
structors [Bur90,Rep96,LM99]. The idea of using phantom types to encode C types was
suggested to us by Matthias Blume [Blu01].
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The type Struct_tree is a phantom type corresponding to the C struct tree

type. The two C type definitions (tree_node and tree_ptr) are translated to
Moby type definitions. The struct tree type is mapped to a module of op-
erations for accessing its fields. Note that the access functions return LValues,
which can be used to assign to the fields. In addition, a sizeOf function is
provided, which can be used to allocate objects of type Struct_tree. Lastly,
the MakeTree function is mapped to the Moby function makeTree.

Using the C-interface library and the generated interface, we can write
Moby code that manipulates the tree data structures and calls the MakeTree
function. For example, the following Moby function walks a tree, adding one
to each label:

fun incLabels (t : CPtr(Struct_tree)) -> ()
{
if isNull t
then ()
else {
val t = deref t;
setSInt(Stree.label t, getSInt(Stree.label t) + 1);
incLabels (getPtr(Stree.left t));
incLabels (getPtr(Stree.right t))

}
}

The generated Moby interface is implemented using BOL types and func-
tions in the generated MBI file. For this interface, the MBI file contains the
following definitions:

type Struct_tree = prim void
type Def_tree_node = Struct_tree
typedef def_tree_ptr = addr(data)
type Def_tree_ptr = prim def_tree_ptr

Notice that the phantom type Struct_tree is defined to be the BOL void

type. Because BOL does not have recursive types, we map the C tree_ptr

type to addr(data) (the BOL equivalent of void*). The access functions for
the struct tree type are implemented as follows:

module Stree {
val label : LValue(Struct_tree) -> LValue(SInt) =

fun fld(p : lvalue, _ : exn_handler) { return p }

val left : LValue(Struct_tree) -> LValue(Def_tree_ptr) =
fun fld(p : lvalue, _ : exn_handler)
{ let q = AdrAdd(p, 4) return q }

val right : LValue(Struct_tree) -> LValue(Def_tree_ptr) =
fun fld(p : lvalue, _ : exn_handler)
{ let q = AdrAdd(p, 8) return q }

val sizeOf : () -> SizeOf(Struct_tree) =
fun sz(_ : exn_handler) { let n = 12 return n }

}

Finally, the makeTree function is implemented as a trivial wrapper around
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the MakeTree C function.
extern addr(struct_tree) MakeTree (int)
val makeTree : Int -> CPtr(Struct_tree) =

fun makeTree (arg : int, _ : exn_handler) {
let result : addr(struct_tree) = ccall MakeTree(arg)
return result

}

3.3 Other applications

Other approaches to generating foreign interfaces are also compatible with
our framework. For example, the C→Haskell tool uses an interface specifica-
tion file coupled with a C header file to generate a Haskell interface to a C
library [Cha99]. The Haskell interface is implemented using GHC’s foreign in-
terface support. Our framework can express the same level of interoperability,
so building a C→Moby tool should be straightforward.

A more interesting application of our framework is to support domain-
specific data objects. For example, a tool for generating evaluators from
atttribute-grammar specifications might use a highly-tuned tree representa-
tion that cannot be expressed directly in Moby. Such a tool could instead
generate an MBI file that defines its tree representation, along with opera-
tions on the trees, which can then be used by other code written in Moby.
The compiler’s cross-module inlining mechanism can then eliminate any per-
formance penalty for using an abstract type.

4 Experimental results

In this section, we present the results of some synthetic benchmarks that
demonstrate the efficiency of interoperability in our framework. Our measure-
ments were performed on a dual-733MHz PIII workstation running Linux,
kernel version 2.2.14.

Our first benchmark tests the overhead of marshaling when using the moby-
idl tool. For this benchmark, we measured the time taken to perform 107 calls
of the gettimeofday system call. The interface to gettimeofday was gener-
ated from the IDL specification given as an example in Section 3.1. We com-
pare the performance of the moby-idl tool with that of the Haskell H/Direct
tool (using GHC 4.08.2) and camlidl (using OCAML 3.00), as well as with
the direct C version (using gcc -O2, version 2.91.66). The measured user and
system times for this benchmark are given in Table 1. The first three data
columns give the execution time in seconds (user, system, and total). The
last two columns give the ratio of the user and total times compared to the
direct C version. As expected, each version of the test uses essentially the
same amount of system time (about 5 seconds), but they have very different
user times. Discounting the system time, the moby-idl version has a marshal-
ing overhead of about 15% over the direct C version. This result compares
favorably with the camlidl overhead of 250% and the H/Direct overhead of
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Table 1
Measured execution times for gettimeofday benchmark

Language Execution time (seconds) Relative to C

or tool sys usr tot usr tot

C 5.02 1.96 6.98 1.00 1.00

moby-idl 5.18 2.25 7.43 1.15 1.06

camlidl 5.48 4.90 10.38 2.50 1.48

H/Direct 6.40 68.68 75.08 35.0 10.76

Table 2
Measured execution times for tree benchmark

Language Execution time (seconds) Relative to C

or tool sys usr tot usr tot

C 0.37 4.61 4.98 1.00 1.00

charon 0.29 4.36 4.65 0.94 0.93

GHC 0.41 15.10 15.51 3.28 3.11

3500%. 11

Our second benchmark is designed to test the efficiency of direct access to
C data structures from Moby code using our framework. Each iteration of
the benchmark constructs a complete binary tree of depth 16 (65535 nodes),
where each node is labeled with an integer generated by calling the rand

function from the C-library. After constructing the tree, we perform a depth-
first traversal to find the largest label, and then explicitly free the tree. The
benchmark iterates these three steps 100 times. We wrote the Moby version
of the benchmark entirely in Moby using the Charon-generated interface
to the C representation. The tree data structure was managed using the
Moby C-interface library’s interface to malloc and free. We compare the
performance of the Moby program with the native C version of the same
algorithm; the results are given in Table 2. From these results, we can see
that the data-level interoperability supported by Charon has no overhead over
native C code. 12 We also measured a version of the program compiled under
GHC. In this version, we used GHC’s Addr type and strictness annotations
to implement an interface similar to the one provided by Charon. These

11 We believe that the high execution time of the H/Direct version is caused by its
use of malloc and free to manage the temporary storage needed for the results of the
gettimeofday call.
12 The slight performance advantage that Moby has in this benchmark is most likely a
result of a slightly more efficient argument passing mechanism.
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measurements demonstrate that while GHC’s foreign-data support has much
of the expressiveness of our framework, it lags in efficiency.

5 Related work

Our approach to interoperability is based on the Moby compiler infrastruc-
ture. This infrastructure serves as the foundation for a wide range of inter-
operability policies, each with its own user-level mechanism. This approach
contrasts with most of the prior work on language interoperability, which fixes
a particular interoperability policy and user-level mechanism. 13

Most high-level language implementations provide some mechanism for
connecting with C code. Often, this mechanism requires hand-written stub
functions to translate between the high-level and C representations. Exam-
ples of languages with such mechanisms include Java (the Java Native Inter-
face) [Lia99], SML/NJ, and OCaml [Ler00]. Our framework also supports
hand-written stubs. Such stubs can either be written in C, as we have done
with some low-level, run-time system functions, or in an MBX file. In the
latter case, the Moby compiler’s cross-module inlining mechanism allows the
stub code to be inlined at its call sites.

Some systems make it possible to write interoperability code in the high-
level language. For example, both the SML’97 Basis Library [GR01] and
the Glasgow Haskell compiler (GHC) [GHC01] provide operations for read-
ing and writing scalar values in a bytearray. With this mechanism, one can
manipulate a C data structure by importing it into a program as a bytear-
ray. However, the user is responsible for understanding the layout of the data
structure. The GHC mechanism is lower-level than that of the SML Basis;
specifically, GHC does no bounds checking and it is possible to read and write
pointer values.

In many respects, GHC’s foreign interface support is the closest to provid-
ing the flexibility of our framework. Our mechanism is slightly more expressive
in that we support C functions with struct arguments. As demonstrated in
Section 4, we also have a significant performance advantage. For more compli-
cated policies, such as those required by IDL, the BOL stackalloc construct
can greatly reduce the overhead of data marshaling. It would difficult to put
such a mechanism into a high-level language without using a sophisticated
type system to control the extent of stack-allocated variables.

6 Conclusion

In this paper, we described Moby’s interoperability infrastructure, which con-
sists of an expressive intermediate representation called BOL and the ability to

13 Of course, some systems have multiple mechanisms, each of which supports a different
policy.
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import externally-defined BOL code into the compilation environment. This
infrastructure supports a wide-range of interoperability tools, from IDL-based
tools that marshal their data to tools such as Charon that provide data-level
interoperability by embedding C into Moby. This infrastructure is highly ef-
ficient because it supports cross-module inlining of BOL code. Experimental
evaluation showed that the overhead associated with invoking foreign func-
tions and manipulating C data structures was very low. While supporting
data-level interoperability requires compiler support, our approach is not spe-
cific to the Moby language per se. Specifically, we expect that our approach
is compatible with compilers that have more strongly-typed IRs.
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